374 research outputs found

    Similarity measures and algorithms for cartographic schematization

    Get PDF

    Area-preserving C-oriented schematization

    Get PDF
    We define an edge-move operation for polygons and prove that every simple non-convex polygon P has a non-conflicting pair of complementary edge-moves that reduces the number of edges of P while preserving its area. We use this result to generate area-preserving C-oriented schematizations of polygons

    Four Soviets walk the dog, with an application to Alt's conjecture

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One measure that is extremely popular is the Fréchet distance. Since it has been proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n^2 log n) algorithm by Alt and Godau for computing the Fréchet distance remains the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard.In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fréchet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fréchet distance between two polygonal curves in time O(n^2 \sqrt log n (log log n)^{3/2}) on a pointer machine and in time O(n^2 (log log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n^{2¿}), for some ¿ > 0. This provides evidence that the decision problem may not be 3SUM-hard after all and reveals an intriguing new aspect of this well-studied problem

    Topologically safe curved schematization

    Get PDF
    Traditionally schematized maps make extensive use of curves. However, automated methods for schematization are mostly restricted to straight lines. We present a generic framework for topology-preserving curved schematization that allows a choice of quality measures and curve types. Our fully-automated approach does not need critical points or salient features. We illustrate our framework with Bézier curves and circular arcs

    Map schematization with circular arcs

    Get PDF
    We present an algorithm to compute schematic maps with circular arcs. Our algorithm iteratively replaces two consecutive arcs with a single arc to reduce the complexity of the output map and thus to increase its level of abstraction. Our main contribution is a method for replacing arcs that meet at high-degree vertices. This allows us to greatly reduce the output complexity, even for dense networks. We experimentally evaluate the effectiveness of our algorithm in three scenarios: territorial outlines, road networks, and metro maps. For the latter, we combine our approach with an algorithm to more evenly distribute stations. Our experiments show that our algorithm produces high-quality results for territorial outlines and metro maps. However, the lack of caricature (exaggeration of typical features) makes it less useful for road networks
    • …
    corecore